

LA-UR-20-23926

Approved for public release; distribution is unlimited.

Title: Biogenic uranium isotope fractionation

Author(s): Marti-Arbona, Ricardo

Jemison, Noah Williams, Robert F. Boukhalfa, Hakim Yeager, Chris Michael

Xu, Ning

Vesselinov, Velimir Valentinov

Intended for: Share with collaborator

Issued: 2020-05-28

Biogenic uranium isotope fractionation

Team presentation

Robert Williams (PI, B-11) Hakim Boukhalfa (Co-PI, EES-14) Ricardo Martí-Arbona (Co-PI, B-11) Co-I's Chris Yeager (C-CDE) Ning Xu (C-AAC) Velimir V. Vesselinov (EES-16) Noah Jemison (former EES-14)

Outline

- Background and relevance
- Project objectives
- Tasks and timeline
- Current Activities
 - ► Task 1: Controlled culture growth
 - ► Task 2: Enzymatic reduction of uranium oxides
 - ► Task 3: Cellular location of uranium reduction and precipitation
- ► Future work
- Achievements

Uranium biogeochemistry

- Uranium chemistry controls how U ore deposits form, how to clean up U contamination, and how U is distributed in the environment
- U is redox-active
 - ▶ U(VI)- soluble and mobile in water systems
 - U(IV)- relatively insoluble and primarily in sediment systems
- Common method to remove U from solution is microbial U(VI) reduction
- However, uranium concentrations impacted by multiple chemical and physical processes

Yabusaki et al., 2008

Uranium isotopes

- Uranium isotopes (²³⁸U/²³⁵U) can provide a more direct indicator of U(VI) reduction
- Not strongly affected by adsorption or physical processes
- Microbial U(VI) reduction- preferential reduction of ²³⁸U (Basu et al., 2014; Stylo et al., 2015)
 - ▶ Less ²³⁸U remaining in U(VI) solution
- ► Abiotic reduction produces a large range of isotopic fractionation (Brown et al., 2018; Stylo et al., 2015)
- What are the processes and mechanisms controlling isotope fractionation?

Basu et al., 2014

What affects fractionation?

- ▶ Isotopic fractionation defined as:
 - $\epsilon = {}^{238}\text{U}/{}^{235}\text{U}_{\text{U(IV) product}} / {}^{238}\text{U}/{}^{235}\text{U}_{\text{U(VI) reactant}}$
- Aqueous chemistry impacts isotope fractionation during abiotic experiments
- May be due to U(VI) speciation or reduction rate
- U(VI) reduction to U(V) and then disproportionation to U(IV) and U(VI)?
- Biosorption, bioaccumulation, and bioreduction mechanisms?
- What are the primary factors controlling the magnitude and direction of isotope fractionation during U(VI) reduction?
- Can we reliably apply ²³⁸U/²³⁵U to track and quantify U(VI) reduction in natural environments?

Project objectives

- ► The underlying goal is to determine the mechanistic driver(s) of U fractionation, probing processes from the initial interaction between the cell and soluble U to the accumulation of U mineral precipitates near or within the cell.
- We will focus on the characterization of three aspects of uranyl bioreduction that likely control U isotope fractionation:
 - ▶ 1. kinetic controls that dictate U adsorption, sequestration, and/or uptake and its subsequent reduction;
 - 2. cellular processes that support the electron transport pathways and enzymatic reduction of uranium;
 - ▶ 3. characterization and mapping of the cellular location of U reduction and precipitation.

Impact of research

- ▶ Determining the primary mechanisms of U isotope fractionation would establish LANL as a leader in environmental isotope measurements
- Develop our capabilities for tracing environmental biogeochemical reactions
- Gain more recognition for emerging isotope measurements and applications

Project timeline

Schedule and Milestones

	2019				2020				2021			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Taks 1: Controlled culture growth												
strain selection and initial culivation												
Paramter sensitivity screaning and												
statistical analysis												
Cultivation experiments with reduced												
number of parmters												
NanoSIM, TEM, SEM characterisation												
XAS characterisation of select samples												
Task 2: Enzymatic reduction of uranium oxides												
Protein Expression and Purification												
Activity Characterization												
Task 3: Cellular location of uranium												

FY-19 activities

- Task 1: Controlled culture growth
 - ▶ Strain selection and initial cultivation
 - ▶ Parameter sensitivity screening and statistical analysis
 - ► Cultivation experiments with reduced number of parameters
 - ▶ Nano SIM, TEM, SEM characterization
 - ► XAS characterization of select samples
- ► Task 2: Enzymatic reduction of uranium oxides
 - ▶ Protein Expression and Purification
 - Activity Characterization
- ► Task 3: Cellular location of uranium
 - Uranium uptake
 - **▶** Cellular Sorption
 - Intracellular uptake

Strain selection and initial cultivation

- Currently, growing Shewanella oneidensis and Pelosinus strain UFO1
 - ▶ Both capable of U(VI) reduction
 - Shewanella- facultative anaerobe, gram (-)
 - Pelosinus- strict anaerobe, gram (+)
- Any differences in isotope fractionation due to different microbial mechanisms?
- How does aqueous chemistry affect isotope fractionation during reduction by these microbes?
- Could microbial uptake impact observed isotope fractionation?

Parameter sensitivity screening

► Abiotic U(VI) reduction experiments

- Abiotic experiments eliminate some of the complexity of microbial experiments
- ► These experiments allow us to screen for what parameters strongly affect isotope fractionation during U(VI) reduction
- ► How does U(VI) speciation, solution chemistry, and reduction rate impact isotope fractionation?

Methods

- Performed batch experiments in an anaerobic chamber where reductant was added to U solutions
- Reductants: FeS and Na₂S with quartz
- Varied chemistry
 - ▶ pH (6.5 and 7)
 - bicarbonate (6 and 2mM)
 - ► Ca (0, 1, and 2mM)
 - ► Mg (0 and 10mM)
 - ► MOPS pH buffer (10 and 70mM)
- Calculated U(VI) speciation and adsorption coefficients (K_D) using CrunchTope

Experiment	mM Ca	mM mM Mg HCO3		mM MOPS	рН	reductant
1	1	0	6	70	7	FeS
2	1	0	6	70	7	FeS
3	0	0	6	70	7	FeS
4	0	0	6	70	7	FeS
5	2	0	6	70	7	FeS
6	2	0	6	70	7	FeS
7	2	0	6	70	7	FeS
8	0	10	6	70	7	FeS
9	1	0	6	10	7	FeS
10	1	0	2	70	7	FeS
11	1	0	6	70	6.5	FeS
12	1	0	6	70	6.5	FeS
13	1	0	6	70	7	HS
14	1	0	2	70	7	HS

Isotope methods

- Collected samples over time as U(VI) was reduced
- Samples filtered to remove reductant and U(IV)
- Analyzed remaining U(VI)
- Added ²³³U-²³⁶U double spike to U(VI) samples to account for mass bias
- Measured U(VI) concentrations and $δ^{238}$ U on a multicollector ICPMS (MC-ICPMS) at University of Illinois
- $\delta^{238}U = (^{238}U/^{235}U_{\text{sample}} / ^{238}U/^{235}U_{112A \text{ std}} -1)*1000\%$

Concentration data

Isotope Data

Fractionation mechanisms?

Fractionation mechanisms?

Parameter sensitivity discussion

- Adsorption coefficient much more strongly correlated with ε than U(VI) speciation or reduction rate
- Aqueous chemistry can influence U isotope fractionation through adsorption and then reduction of U(VI)
- ▶ U(VI) adsorption induces an isotopic fractionation of \sim 0.2‰ (adsorbed U(VI) enriched in 235 U) (Jemison et al., 2016)
- Fractionation remains intact when K_D is high, but with low K_D , ε is dominated by U(VI) reduction (²³⁸U preferentially reduced)

Parameter sensitivity discussion

- \blacktriangleright With high K_D , most U(VI) that is adsorbed is reduced
- \blacktriangleright With low K_D , more U(VI) can desorb and communicate with the aqueous U(VI) pool
- What about microbial U(VI) reduction?
 - ▶ Need to test how aqueous chemistry impacts U isotope fractionation

Enzymatic reduction of uranium oxides

- ► Chris will update
 - ► Protein Expression and Purification
 - ► Activity Characterization

FY-19 Accomplishments

- Jemison, N.; Reimus, P.; Harris, R.; Boukhalfa, H.; Clay, J.; Chamberlain, K. Reduction and potential remediation of U(VI) by dithionite at an in-situ recovery mine: insights gained by δ²³⁸U. Applied Geochemistry. Submitted. (LA-UR-19-27182)
- ▶ Jemison, N.; Boukhalfa, H.; Marti-Arbona, R.; Yeager, C.; Ning, X. Mechanisms of Uranium Isotope Fractionation. Poster, Goldschmidt 2019. (LA-UR-19-22703)

Current activities

- ► Task 1: Controlled culture growth
 - Strain selection and initial cultivation
 - ▶ Parameter sensitivity screening and statistical analysis
 - ► Cultivation experiments with reduced number of parameters
 - ▶ Nano SIM, TEM, SEM characterization
 - ► XAS characterization of select samples
- ► Task 2: Enzymatic reduction of uranium oxides
 - ► Protein Expression and Purification
 - Activity Characterization
- Task 3: Cellular location of uranium
 - Uranium uptake
 - Cellular Sorption
 - Intracellular uptake

Microbial Pu reduction

- Will soon reduce Pu(VI) to Pu(V) and Pu(IV) using Shewanella and Pelosinus
- ▶ Allows us to see fractionation for each electron step
 - ▶ U(VI) reduction does not produce significant amounts of stable U(V) species
- First study on Pu isotope fractionation during natural reduction processes

External Collaborators

- ► Tom Johnson (University of Illinois- Urbana-Champaign)
- John Cliff (Pacific Northwest National Laboratory)
- ▶ ŚŚ